DOCTORAL PROGRAMS IN COMPUTATIONAL SCIENCE AND ENGINEERING

Computational Science and Engineering (https://catalog.mit.edu/ interdisciplinary/graduate-programs/computational-scienceengineering)

Doctor of Philosophy in Computational Science and **Engineering**

Program Requirements

Core Subjects		
18.335[J]	Introduction to Numerical Methods	12
CSE.900	Doctoral Seminar in Computational Science and Engineering	3
Core Area of S	tudy	
Choose four 12 areas: 1	2-unit subjects from these six core CSE	48
Discretizati differential	on and numerical methods for partial equations	
Optimizatio	on methods	
Statistics a	nd data-driven modeling	
High-perfor	mance computing and/or algorithms	
Mathematic analysis, pr	cal foundations (e.g., functional robability)	
	.e., a subject that treats mathematical any science or engineering discipline)	
Computationa	l Concentration ¹	24

Total Units	279-399
Thesis Research	168-288
Choose 24 units of additional graduate-level subjects in any field.	
Unrestricted Electives	24
Computational Concentration *	24

A program of study comprising subjects in the selected core areas and the computational concentration must be developed in consultation with the student's doctoral thesis committee and approved by the CCSE graduate officer.

Programs Offered by CCSE in Conjunction with Select Departments in the Schools of Engineering and Science

Computational Science and Engineering (https://catalog.mit.edu/ interdisciplinary/graduate-programs/computational-scienceengineering)

The interdisciplinary doctoral program in Computational Science and Engineering (PhD in CSE + Engineering or Science (p. 3)) offers students the opportunity to specialize at the doctoral level in a computation-related field of their choice via computationally-

oriented coursework and a doctoral thesis with a disciplinary focus related to one of eight participating host departments, namely, Aeronautics and Astronautics; Chemical Engineering; Civil and Environmental Engineering; Earth, Atmospheric and Planetary Sciences; Materials Science and Engineering; Mathematics; Mechanical Engineering; or Nuclear Science and Engineering.

Doctoral thesis fields associated with each department are as follows:

• Aeronautics and Astronautics

- Aerospace Engineering and Computational Science
- · Computational Science and Engineering (available only to students who matriculate in 2023-2024 or earlier)

• Chemical Engineering

· Chemical Engineering and Computation

• Civil and Environmental Engineering

- · Civil Engineering and Computation
- Environmental Engineering and Computation

Materials Science and Engineering

Computational Materials Science and Engineering

Mechanical Engineering

• Mechanical Engineering and Computation

• Nuclear Science and Engineering

- Computational Nuclear Science and Engineering
- · Nuclear Engineering and Computation

• Earth, Atmospheric and Planetary Sciences

Computational Earth, Science and Planetary Sciences

Mathematics

Mathematics and Computational Science

As with the standalone CSE PhD program, the emphasis of thesis research activities is the development of new computational methods and/or the innovative application of state-of-the-art computational techniques to important problems in engineering and science. In contrast to the standalone PhD program, however, this research is expected to have a strong disciplinary component of interest to the host department.

The interdisciplinary CSE PhD program is administered jointly by CCSE and the host departments. Students must submit an application to the CSE PhD program, indicating the department in which they wish to be hosted. To gain admission, CSE program applicants must receive approval from both the host department graduate admission committee and the CSE graduate admission committee. See the website for more information about the application process, requirements, and relevant deadlines (https:// cse.mit.edu/admissions).

Once admitted, doctoral degree candidates are expected to complete the host department's degree requirements (including qualifying exam) with some deviations relating to coursework, thesis committee composition, and thesis submission that are specific to the CSE program and are discussed in more detail on the CSE

website (https://cse.mit.edu/programs/phd). The most notable coursework requirement associated with this CSE degree is a course of study comprising five graduate subjects in CSE (below).

Computational Concentration Subjects

compatationat		
1.125	Architecting and Engineering Software Systems	12
1.545	Atomistic Modeling and Simulation of Materials and Structures	12
1.583[J]	Topology Optimization of Structures	12
1.723	Computational Methods for Flow in	12
11/2)	Porous Media	12
2.098	Introduction to Finite Element Methods	12
2.156	Artificial Intelligence and Machine Learning for Engineering Design	12
2.168	Learning Machines	12
2.29	Numerical Fluid Mechanics	12
3.320	Atomistic Computer Modeling of Materials	12
4.450[J]	Computational Structural Design and Optimization	
6.7210[J]	Introduction to Mathematical Programming	12
6.7220[J]	Nonlinear Optimization	12
6.7230[J]	Algebraic Techniques and Semidefinite Optimization	12
6.7300[J]	Introduction to Modeling and Simulation	12
6.7810	Algorithms for Inference	12
6.7830	Bayesian Modeling and Inference	12
6.7900	Machine Learning ¹	12
6.7940	Dynamic Programming and Reinforcement Learning	12
6.8300	Advances in Computer Vision	12
6.8410	Shape Analysis	12
6.C ₅ 1	Modeling with Machine Learning: from Algorithms to Applications ²	6
9.520[J]	Statistical Learning Theory and Applications	12
9.660	Computational Cognitive Science	12
10.551	Systems Engineering ³	9
10.552	Modern Control Design ³	9
10.554[J]	Process Data Analytics	12
10.557	Mixed-integer and Nonconvex Optimization	12
10.637[J]	Computational Chemistry	12
12.515	Data and Models	12
12.521	Computational Geophysical Modeling	12

12.805 Da Oc 12.850 Cc 15.070[J] Di Pr 15.077[J] St Da 15.083 In 15.764[J] Th	omputational Data Analysis ata Analysis in Physical ceanography omputational Ocean Modeling screte Probability and Stochastic rocesses tatistical Machine Learning and ata Science 1 teger Optimization ne Theory of Operations anagement ptimization Methods sight Vehicle Aerodynamics	12 12 12 12 12 12
12.850 Cc 15.070[J] Di Pr 15.077[J] St Da 15.083 In 15.764[J] Th	ceanography computational Ocean Modeling discrete Probability and Stochastic rocesses districtal Machine Learning and data Science 1 teger Optimization the Theory of Operations anagement ptimization Methods	12 12 12 12
15.070[J] Di Pr 15.077[J] St Da 15.083 In 15.764[J] Th	iscrete Probability and Stochastic rocesses tatistical Machine Learning and tata Science ¹ teger Optimization the Theory of Operations anagement ptimization Methods	12 12 12 12
Pr 15.077[J] St Da 15.083 In 15.764[J] Th	rocesses tatistical Machine Learning and tata Science ¹ teger Optimization the Theory of Operations anagement ptimization Methods	12 12 12
15.083 In 15.764[J] Th	ata Science ¹ teger Optimization ne Theory of Operations anagement ptimization Methods	12 12
15.764[J] Th	ne Theory of Operations anagement ptimization Methods	12
	anagement ptimization Methods	
M		12
15.C57[J] O _I	ight Vehicle Aerodynamics	
		12
	omputational Mechanics of aterials	12
	inciples of Autonomy and Decision aking	12
	ultidisciplinary Design ptimization	12
	umerical Methods for Partial ifferential Equations	12
M	dvanced Topics in Numerical ethods for Partial Differential quations	12
	umerical Methods for Stochastic odeling and Inference	12
18.335[J] In	troduction to Numerical Methods	12
JJ 1	st Methods for Partial Differential nd Integral Equations	12
	arallel Computing and Scientific achine Learning	12
18.338 Ei	genvalues of Random Matrices	12
5 7	athematical Methods in anophotonics	12
18.435[J] Qı	uantum Computation	12
22.15 Es	ssential Numerical Methods	6
22.212 No	uclear Reactor Analysis II	12
22.213 No	uclear Reactor Physics III	12
,	oplied Computational Fluid ynamics and Heat Transfer	12
Co	speriential Learning in omputational Science and organizations	
	atistics, Computation and oplications	12

Note: Students may not use more than 12 units of credit from a "meets with undergraduate" subject to fulfill the CSE curriculum requirements

- Credit can only be given for one of 6.7900, 15.077[J], or IDS.147[J].
- Students cannot receive credit without simultaneous completion of a 6unit Common Ground disciplinary module. The two subjects together $count\ as\ one\ {\it 12-unit\ subject.}\ See\ 6.C51\ for\ more\ information.$
- Students can receive credit for either 10.551 or 10.552 as a CSE concentration subject, but not both.
- Subject to Sloan bidding process.