DOCTORAL PROGRAMS IN COMPUTATIONAL SCIENCE AND ENGINEERING

Programs Offered by CCSE in Conjunction with Select Departments in the Schools of Engineering and Science

Computational Science and Engineering (*https://catalog.mit.edu/ interdisciplinary/graduate-programs/computational-scienceengineering*)

The interdisciplinary doctoral program in Computational Science and Engineering (PhD in CSE + Engineering or Science (p. 3)) offers students the opportunity to specialize at the doctoral level in a computation-related field of their choice via computationallyoriented coursework and a doctoral thesis with a disciplinary focus related to one of eight participating host departments, namely, Aeronautics and Astronautics; Chemical Engineering; Civil and Environmental Engineering; Earth, Atmospheric and Planetary Sciences; Materials Science and Engineering; Mathematics; Mechanical Engineering; or Nuclear Science and Engineering.

Doctoral thesis fields associated with each department are as follows:

- Aeronautics and Astronautics
 - Aerospace Engineering and Computational Science
 - Computational Science and Engineering (available only to students who matriculate in 2023–2024 or earlier)
- Chemical Engineering
 - Chemical Engineering and Computation
- Civil and Environmental Engineering
 - Civil Engineering and Computation
 - Environmental Engineering and Computation
- Materials Science and Engineering
 - Computational Materials Science and Engineering
- Mechanical Engineering
 - Mechanical Engineering and Computation
- Nuclear Science and Engineering
 - Computational Nuclear Science and Engineering
 - Nuclear Engineering and Computation
- Earth, Atmospheric and Planetary Sciences
- Computational Earth, Science and Planetary Sciences
- Mathematics
 - Mathematics and Computational Science

As with the standalone CSE PhD program, the emphasis of thesis research activities is the development of new computational methods and/or the innovative application of state-of-the-art computational techniques to important problems in engineering and science. In contrast to the standalone PhD program, however, this research is expected to have a strong disciplinary component of interest to the host department.

The interdisciplinary CSE PhD program is administered jointly by CCSE and the host departments. Students must submit an application to the CSE PhD program, indicating the department in which they wish to be hosted. To gain admission, CSE program applicants must receive approval from both the host department graduate admission committee and the CSE graduate admission committee. See the website for more information about the application process, requirements, and relevant deadlines (*https:// cse.mit.edu/admissions*).

Once admitted, doctoral degree candidates are expected to complete the host department's degree requirements (including qualifying exam) with some deviations relating to coursework, thesis committee composition, and thesis submission that are specific to the CSE program and are discussed in more detail on the CSE website (*https://cse.mit.edu/programs/phd*). The most notable coursework requirement associated with this CSE degree is a course of study comprising five graduate subjects in CSE (below).

Computational Concentration Subjects

1.125	Architecting and Engineering	12
	Software Systems	
1.545	Atomistic Modeling and Simulation	12
	of Materials and Structures	
1.583[J]	Topology Optimization of Structures	12
1.723	Computational Methods for Flow in	12
	Porous Media	
2.098	Introduction to Finite Element	12
	Methods	
2.156	Artificial Intelligence and Machine	12
	Learning for Engineering Design	
2.168	Learning Machines	12
2.29	Numerical Fluid Mechanics	12
3.320	Atomistic Computer Modeling of	12
	Materials	
4.450[J]	Computational Structural Design and	
	Optimization	
6.7210[J]	Introduction to Mathematical	12
	Programming	
6.7220[J]	Nonlinear Optimization	12
6.7230[J]	Algebraic Techniques and	12
	Semidefinite Optimization	
6.7300[J]	Introduction to Modeling and	12
	Simulation	
6.7810	Algorithms for Inference	12
6.7830	Bayesian Modeling and Inference	12
6.7900	Machine Learning ¹	12

6.7940	Dynamic Programming and Reinforcement Learning	12
6.8300	Advances in Computer Vision	12
6.8410	Shape Analysis	12
6.C51	Modeling with Machine Learning:	6
	from Algorithms to Applications ²	-
9.520[J]	Statistical Learning Theory and Applications	12
9.660	Computational Cognitive Science	12
10.551	Systems Engineering ³	9
10.552	Modern Control Design ³	9
10.554[J]	Process Data Analytics	12
10.557	Mixed-integer and Nonconvex Optimization	12
10.637[J]	Computational Chemistry	12
12.515	Data and Models	12
12.521	Computational Geophysical Modeling	12
12.620[J]	Classical Mechanics: A	12
40 744	Computational Approach	12
12.714 12.805	Computational Data Analysis Data Analysis in Physical	12
12.805	Oceanography	12
12.850	Computational Ocean Modeling	12
15.070[J]	Discrete Probability and Stochastic Processes	12
15.077[J]	Statistical Machine Learning and Data Science ¹	12
15.083	Integer Optimization	12
15.764[J]	The Theory of Operations Management	12
15.C57[J]	Optimization Methods	12
16.110	Flight Vehicle Aerodynamics	12
16.225[J]	Computational Mechanics of Materials	12
16.413[J]	Principles of Autonomy and Decision Making	12
16.888[J]	Multidisciplinary Design Optimization	12
16.920[J]	Numerical Methods for Partial Differential Equations	12
16.930	Advanced Topics in Numerical Methods for Partial Differential Equations	12
16.940	Numerical Methods for Stochastic Modeling and Inference	12
18.335[J]	Introduction to Numerical Methods	12
18.336[J]	Fast Methods for Partial Differential and Integral Equations	12

18.337[J]	Parallel Computing and Scientific Machine Learning	12
18.338	Eigenvalues of Random Matrices	12
18.369[J]	Mathematical Methods in Nanophotonics	12
18.435[J]	Quantum Computation	12
22.15	Essential Numerical Methods	6
22.212	Nuclear Reactor Analysis II	12
22.213	Nuclear Reactor Physics III	12
22.315	Applied Computational Fluid Dynamics and Heat Transfer	12
CSE.999	Experiential Learning in Computational Science and Engineering	
IDS.131[J]	Statistics, Computation and Applications	12

Note: Students may not use more than 12 units of credit from a "meets with undergraduate" subject to fulfill the CSE curriculum requirements

- ¹ Credit can only be given for one of 6.7900, 15.077[J], or IDS.147[J].
- ² Students cannot receive credit without simultaneous completion of a 6unit Common Ground disciplinary module. The two subjects together count as one 12-unit subject. See 6.C51 for more information.
- ³ Students can receive credit for either 10.551 or 10.552 as a CSE concentration subject, but not both.
- ⁴ Subject to Sloan bidding process.